[This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1401

A

Unique Paper Code : 42344403

Name of the Paper : Computer System Architecture

Name of the Course : B.Sc. (Prog) / Mathematical

Science

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Question No. 1 is compulsory.
- 3. Attempt any 5 of questions Nos. 2 to 9.
- 4. Parts of a question must be answered together.
- 1. (a) How many 256 words x 8 bits per word RAM chips are needed to provide a memory capacity of 4096 words x 16 bits per word? (2)

P.T.O.

(b) What is radix of the numbers if the solution to the quadratic equation (2)

 $x^2 - 10x + 31 = 0$ is x = 5 and x = 8?

(c) Represent the following conditional control statement by two register transfer statements with control functions.

If (P=1) then $(R1 \leftarrow R2)$ else if (Q=1) then $(R1 \leftarrow R3)$

- (d) State any two differences between combinational and sequential circuit. (2)
- (e) Give the characteristic table of JK flip-flop. (2)
- (f) What is a binary counter? How many flip-flops will be required for an n-bit binary counter?

(2)

- (g) Consider a memory of capacity 16M words x 32 bits per word. How many address lines and input-output data lines are needed? (2)
- (h) Simplify the following expressions using Boolean algebra.

(BC'+A'D) (AB'+CD') (2)

(i) Can the following microoperation be executed during a single clock pulse in the system? Specify a sequence of microoperations that will perform the operation

 $IR \leftarrow M[PC]$ (2)

- (j) How many flip-flops will be complemented in an 8-bit counter to reach the next count after:
 - (i) 01100111
 - (ii) 111111111 (2
- (k) Convert the following decimal numbers to the base indicated
 - (i) 7562 to octal
 - (ii) 1938 to hexadecimal (2)
 - (1) Write a short note on input-output interface.
- 2. (a) Define the full adder. Illustrate same with the help of truth table and logic diagram. Also write Boolean expression for carry and sum operations. (6)
 - (b) Given two registers A and B with contents as follow-

(3)

Register A (before operation) 1010

Register B (logic operand) 1100

Show the contents of A using the contents of B after performing the following operations.

- (i) Mask operation
- (ii) Selective Complement
- 3. (a) Design a 4-bit combinational circuit decrementer using four full-adder circuit. Explain its working.

 (6)
 - (b) Simplify the given Boolean function using fourvariable maps. [Sum of the Products (SOP) form.]

$$F(A, B, C, D) = \Sigma(0,2,4,5,6,7,8,10,13,15).$$
 (4)

- 4. (a) An instruction is stored at location 300 with its address field at location 301. The address field has the value 400. A processor register R1 contains the number 200. Evaluate the effective address if the addressing mode of the instruction is
 - (i) immediate
 - (ii) relative

- (iii) index with R1 as the index register. (6)
- (b) Explain the concept of Direct Memory Access using block diagram? How does DMA transfer take place? (4)
- 5. (a) What are the different types of instruction formats?

Given the following instructions (in hexadecimal), identify the category to which each of these belong.

(i) F800

(ii) 7800 (6)

(b) Design a 3x8 decoder using 2x4 decoders. Explain its working. (4)

6. (a) Write a program to evaluate the arithmetic statement:

$$X = (A+B) *(C+D)$$

using zero address and one address instructions.

(6)

(b) What is hardwired control unit? Explain its working with a suitable diagram. (4)